LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 30-04-2025 Dept. No.

M.Sc. DEGREE EXAMINATION – STATISTICS

FIRST SEMESTER – **APRIL 2025**

Max.: 100 Marks

PST1MC04 - SAMPLING THEORY

SECTION A – K1 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$	
1	Define the following	
a)	Fixed and Varying size sampling design.	
b)	Lahiri's Method.	
c)	Systematic Sampling.	
d)	Multistage Sampling.	
e)	Adaptive Sampling.	
SECTION A – K2 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$	
2	Fill in the blanks	
a)	The probability that a specific unit is included in the sample is called its probability.	
b)	The Des Raj estimator is commonly used in sampling, where the probability of selection	
	is related to the size of the units.	
c)	\hat{Y}_{LSS} is more efficient than \hat{Y}_{SRS} , when the population values Y_i satisfy	
d)	The ratio estimator namely can be used for estimating the population total Y only	
	when X is known.	
e)	In Warner's model, if the respondent uses a biased coin with probability (p) of heads, the expected	
	proportion of "Yes" responses is given by	
SECTION B – K3 (CO2)		
	Answer any THREE of the following $(3 \times 10 = 30)$	
3	Prove that unbiasedness of an estimator depends on the sampling design.	
4	a. Describe the Simple Random Sampling Without Replacement (SRSWOR) design and explain the	
	unit drawing mechanism. (4)	
	b. In SRSWOR, show that (6)	
	(i) $\pi_i = \frac{n}{N}$; $i = 1, 2,, N$, and	
	IV.	

	(ii) $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$; $i, j = 1, 2,, N$ and $i \neq j$.	
5	Describe Random Group Method in detail. Also, demonstrate that an unbiased estimator of Y under	
	random group method is $\hat{Y}_{RG} = \sum_{i=1}^{n} \frac{y_i}{x_i} T_x(i)$.	
6	Derive $V(\hat{Y}_{st})$ under Neyman allocation.	
7	Explain Simmons Randomized Response Technique and find the estimated variance of $\hat{\pi}_A$ when π_Y	
	is unknown.	
SECTION C – K4 (CO3)		
	Answer any TWO of the following $(2 \times 12.5 = 25)$	
8	Examine whether $T_1(s) = \frac{1}{n(s)} \sum_{i \in s} Y_i$ and $T_2(s) = [\max_{i \in s} \{Y_i\} + \min_{i \in s} \{Y_i\}] / 2$ are unbiased for \overline{Y}	
	under the sampling design $P(s) = \begin{cases} \frac{1}{4} & \text{if } n(s) = 3\\ 0 & \text{otherwise} \end{cases}$. Given $Y_1 = 2$, $Y_2 = 3$, $Y_3 = 4$, and $Y_4 = 7$.	
9	In PPSWOR sampling scheme, give the reason for using Desraj ordered estimator instead of Hurwitz	
	- Thompson estimator. Verify if Desraj ordered estimator is unbiased for population total.	
10	Under Stratified Random Sampling, show that an UBE of Y is $\hat{Y}_{st} = \sum_{h=1}^{L} \hat{Y}_h$. Also, obtain the formula	
	for \hat{Y}_{st} , $V(\hat{Y}_{st})$ and $v(\hat{Y}_{st})$ under the design (i) SRSWOR and (ii) PPSWR.	
11	Obtain Hartley – Ross unbiased ratio type estimator for population total.	
SECTION D – K5 (CO4)		
	Answer any ONE of the following $(1 \times 15 = 15)$	
12	Describe Hansen-Hurwitz Estimator and show that \hat{Y}_{HHE} is unbiased for Y. Also, show that	
	$v(\hat{Y}_{HHE}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\frac{y_i}{p_i} - \hat{Y}_{HHE} \right)^2.$	
13	Explain in detail Warner's Model and find the estimated variance of $\widehat{\Pi}_A$.	
SECTION E – K6 (CO5)		
	Answer any ONE of the following $(1 \times 20 = 20)$	
14	a. Explain Midzuno Sampling Design (MSD). (6)	
	b. Under MSD, show that $(7+7)$	
	i. the first order inclusion probability is $\Pi_i = \frac{N-n}{N-1} \cdot \frac{X_i}{X} + \frac{n-1}{N-1}$, i=1,2, N, and	
	ii. the second order inclusion probability is $\Pi_{ij} = \frac{(N-n)(n-1)}{(N-1)(N-2)} \cdot \frac{X_i + X_j}{X} + \frac{(n-1)(n-2)}{(N-1)(N-2)}, i \neq j = 1, 2,, N.$	
15	Describe Regression Estimation and derive an approximate expression for the bias and MSE of \hat{Y}_{LR} .	

\$\$\$\$\$\$\$\$\$\$\$\$\$